A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials
نویسندگان
چکیده
A three-dimensional nonlocal multiscale discrete-continuum model has been developed for modeling mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an informationpassing coupling between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures nonlocal overall responses of the granular assemblies. The resulting multiscale discrete-continuum coupling method retains the simplicity and efficiency of a continuum-based finite element model, while circumventing mesh pathology in the postbifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level. In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now inferred directly from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model are verified in comparisons with single-scale benchmark discrete element method simulations. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Nonlocal Effect on Buckling of Triangular Nano-composite Plates
In the present study, small scale effect on critical buckling loads of triangular nano- composite plates under uniform in-plane compression is studied. Since at nano-scale the structure of the plate is discrete, the size dependent nonlocal elasticity theory is employed to develop an equivalent continuum plate model for this nanostructure incorporating the changes in its mechanical behavior. The...
متن کاملPredicting possible leakage due to dynamics strain localization in granular materials with a coupled continuum-discrete coupling model
A three-dimensional multiscale model has been developed and used to analyze the evolutions of microstructural attributes and hydraulic properties inside dilatant shear bands. In the proposed multiscale coupled scheme, we establish links between the discrete element method, which explicitly replicates granular motion of individual particles, and a fi nite element continuum model, which captures ...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کاملRefined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model
In this article, the free vibration behavior of nanoscale FG rectangular plates is studied within the framework of the refined plate theory (RPT) and small-scale effects are taken into account. Using the nonlocal elasticity theory, the governing equations are derived for single-layered FG nanoplate. The Navier’s method is employed to obtain closed-form solutions for rectangular nanoplates assum...
متن کاملMultiscale modeling and characterization of granular matter From grain kinematics to continuum mechanics
Granular sands are characterized and modeled here by explicitly exploiting the discretecontinuum duality of granular matter. Grain-scale kinematics, obtained by shearing a sample under triaxial compression, are coupled with a recently proposed multiscale computational framework to model the behavior of the material without resorting to phenomenological evolution (hardening) laws. By doing this,...
متن کامل